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1. INTRODUCTION

Rotating machinery, including machining spindles, industrial turbomachinery, and aircraft
gas turbine engines, are very commonly used in industry. One major problem faced by these
machineries is the harmful, imbalance-induced vibration. Many methods have been
developed to reduce this vibration: o!-line balancing methods [1], on-line active balancing
methods using mass redistribution devices [2}5], and on-line active balancing methods
using magnetic bearings [6}9]. These on-line methods can be applied during the operation
of the rotor if the rotating speed is a constant.

In some applications, the balancing needs to be completed during speed-varying transient
time in order to save time and get better performance. For example, in high-speed
machining, the spindle speed could be up to 40 000 r.p.m. and the chip-to-chip time could be
less than 2 s. If an active balancing scheme is used in this machine, the balancing has to be
done during the acceleration period to avoid increasing the cutting cycle time. Furthermore,
the maximum vibration of a rotor usually occurs when it passes through its critical speeds.
To avoid this hostile vibration, balancing during acceleration is needed. Zhou and Shi [10]
proposed an adaptive active balancing scheme to perform balancing during acceleration by
using an innovative mass redistribution actuator. There are multiple vibration modes for
a general rotor. In general, if single-plane balancing is considered, the optimal
compensating imbalances are di!erent for di!erent modes. However, since the imbalance
distribution of the balancer can be changed during operation, the vibration of both
vibration modes can be suppressed e$ciently by only one balancer [11]. To balance
multiple modes with only one balancer, a &&switching'' function for the balancer needs to be
determined. In this paper, we assume the balancer is not at any nodes of the vibration
modes and the optimal switching function for the balancer during acceleration is
investigated. A rigid rotor model is used, but the extension to the #exible rotor with multiple
vibration modes is straightforward.

This paper consists of four sections. A brief review of the adaptive active balancing will be
given in section 2. Section 3 presents an optimal one-plane active balancing strategy, which
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is e$cient for reducing the imbalance-induced vibration. This strategy is optimal under the
given cost function. Finally, conclusions are presented in the last section.

2. REVIEW OF ADAPTIVE ACTIVE BALANCING DURING ACCELERATION

The geometric set-up of a rigid rotor model is shown in Figure 1. X>Z is the inertial
co-ordinate frame and xyz is the body-"xed co-ordinate frame. The basic assumptions are
the following. (1) The rotor is rigid; the imbalance is modelled as a concentrated mass on the
rotor. (2) The bearings are isotropic and modelled by a set of linear spring and dampers. (3)
The angular acceleration is constant; the translational motion in > direction is assumed to
be zero. (4) The lateral vibration motions are assumed small to simplify the dynamics.
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Figure 1. The geometric set-up of the rigid rotor model.
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we can obtain the governing equation of motion of the rigid rotor during acceleration

x5 "A(t)x#B C
f
1
f
2
D , (1)
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and the system is treated as a time-invariant linear system.
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we can obtain the regression formulation
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where e
1
and e

2
are normally distributed noise, which include multiple noise sources, such as

the measurement noise and modelling noise. It is well known that the least-squares solution
of equation (2) is
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The calculation of equation (3) can be ful"lled in a recursive manner [12]. Based on this
solution, b

1
}b

4
can be estimated.

The actuator used in this study is a mass redistribution device. If the objective is to
minimize the imbalance-induced synchronous vibration, the best way to do this is to let the
forcing term be zero. There are two vibration modes for a rigid rotor system. To control the
translational mode, we need
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to o!set the imbalance-induced force. To control the conical inclination mode, we need
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to o!set the imbalance-induced moment.
It is clear that if the balancer is not at the same transverse plane as the imbalance, i.e.,

w
y
Ou

y
, these two modes cannot be controlled simultaneously by only one balancer. In the

next section, an optimal balancing strategy based on the imbalance estimation will be
presented.

3. OPTIMAL ACTIVE BALANCING FOR ROTOR SYSTEM WITH MULTIPLE
VIBRATION MODES

The imbalance-induced vibration during acceleration needs to be studied in order to
obtain the optimal positions of the balancer.

In the past, most work [13] used numerical integration techniques to obtain the transient
vibration of a rotor during acceleration. Those techniques are not suitable for the optimal
active balancing design. Recently, Zhou and Shi [14] developed an analytical expression to
describe the imbalance response of a Je!cott rotor during acceleration. The imbalance
response of the Je!cott rotor during constant acceleration is written explicitly as a function
of the system imbalance. The whole response consists of three parts: (1) transient vibration
at damped natural frequency, (2) synchronous vibration at the instantaneous
&&synchronous'' frequency, and (3) suddenly occurring vibration at damped natural
frequency. Although the solution is based on the Je!cott rotor, this solution can be applied
to a general rotor by using modal analysis technique. An outline of this solution is given in
Appendix A. The part 1 vibration is usually very small. If only parts 2 and 3 are considered,
the transient response for a general rotor system can be written as
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where v is a complex number that represents the vibration of rotor in two directions, N is
the number of signi"cant vibration modes, U

k
a complex number that represents the system

imbalance in the kth mode, t the time, a the acceleration, u
dk

the damped natural frequency



Figure 2. The decomposition of the transient vibration for a rigid rotor: (a) and (c) M
sk

(t) and o
k
(t) in equation

(6); (c) and (d) M
nk

(t) and c
k
(t) in equation (6).
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of the kth mode, and M
sk

, o
k
, M

nk
and c

k
are de"ned as the magnitudes and phases of the

synchronous vibration and the suddenly occurring vibration in the kth mode respectively.
In the rigid rotor cases there are only two vibration modes: translational motion and

inclination motion. These two modes are de-coupled in the set-up in Figure 1. Hence, the
modal decomposition is not needed. o

k
, M

sk
, c

k
, and M

nk
for a rigid rotor with

a"300 rad/s2, ¸"1)0 m, r"0)1m, k"4]107N/m, and C"1000N s/m are shown in
Figure 2.

A cost function for the optimal active balancing strategy can be
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where u
bk

is the imbalance provided by the balancer for the kth mode, v
sk

and v
nk

are the
synchronous and suddenly occurring vibration for the kth mode. The meaning of this cost
function is that we try to minimize the magnitude of the total vibration contributed by
N vibration modes during acceleration. The vibration in each mode is represented as
a summation of the synchronous component and the suddenly occurring free vibration.
Substituting the analytical expression for v

sk
and v
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into equation (7) yields
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where u
bk

is the imbalance provided by the balancer for the kth mode, u
sk

is the system
imbalance, and M

k
is M

sk
#M

nk
. One point that needs to be noticed is that the transient

vibration caused by the balancer movement is ignored because of the slow movement of the
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balancer. This assumption will be true only when the balancer movement happens at an
instant that is far from the resonant peaks. Indeed, we should not move the balancer at
resonant peaks in practice because that will cause large transient vibration even if the
balancer movement is slow.

Equation (8) is the cost function for a general rotor system. A rigid rotor with two
vibration modes will be used as an example to illustrate the solution procedure for this
optimization problem.

For a rigid rotor, de"ning a"m
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Then, equation (8) changes to
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In this equation, J(a#x)2#(b#y)2M
1

represents the translational vibration whose

physical unit is meter. J(cb#dy)2#(ca#dx)2M
2

represents the conical vibration whose
physical unit should originally be radians. However, in order to make these two terms
addable, we multiply a scale factor l

s
with a unit of meter with the original M

2
. Hence, both

the "rst term and the second term have a unit of meter. The physical meaning of this
multiplication is that the conical vibration is represented by the vibration of a point that is
located at (0, l

s
, 0).

The geometrical method can be used to illustrate the solution of this optimization
problem. The problem can be re-formulated as follows. Given two points
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reaches minimum.
The solution is shown in Figure 3. It is clear that points O, A, and B are on the same line

and points O, C, and D are on the same line from their co-ordinates. Without losing
generality, we can assume that OD is longer than OC and that OB is longer than OA.

First, we can prove that the optimal positions of C and D are on the line of OAB. Given
arbitrary points C@ and D@ that are not on the line of OAB, we can "nd two other points
C and D that are on the line of OAB and DOCD"DOC@ D, DODD"DOD@ D; D ) D means length. It is
clear that DOAD)DOC@ D#DC@AD from the triangle inequality. But DOAD"DOCD#DCAD, and
DOCD"DOC@ D; therefore DCAD)DC@AD. Similarly, DBDD)DBD@D. Hence, the optimal C and
D must locate at the line of OAB.

Second, the optimal location of C and D on the line OAB can be found as follows. Since
the directions of OAB and OCD are the same, x/y"a/b. Substituting y"(b/a)x into
equation (10), the minimization problem changes to

min
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Figure 3. Geometrical solution.
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This optimal solution can be converted to the optimal active balancing strategy. At
a certain point when the vibration provided by the second mode multiplied by d becomes
larger than the vibration provided by the "rst mode, the balancer jumps from balancing the
"rst mode to balancing the second mode. The ideal step control policy cannot be realized in
practice. We can use the maximum capability of the balancer to approximate this step
change.

Figure 4 shows a simulation result using the developed optimal balancing strategy. In this
simulation, the imbalance (0)5 kg) is located at (0)1, !0)3, 0)05) and the balancer (0)5 kg) is
located at (w

x
, 0)3, w

z
), where w

x
and w

z
are control inputs. The output is the vibration of

a point located at the rotating axis, which is 0)5m from the center of mass. A noise with
range $10~5m is added to the system output. Other dynamic parameters used are the
same as those in Figure 2.

Using the optimal active balancing strategy developed, we obtain the switching time for
the second mode as t"2)9506 s. The optimal active balancing scheme integrates the
recursive least-squares estimation of imbalance and the optimal step-changing control law.
The optimal balancing strategy adopted by Figure 4(g) is as follows: (1) keep the balancer at
zero position and estimate the position and magnitude of the system imbalance; (2) move
the balancer to the opposite side of the estimated imbalance to counteract the imbalance in
the "rst vibration mode and keep updating the estimation of system imbalance; (3) move the
balancer to control the second vibration mode at 2)9506 s and keep updating the imbalance
estimation. (4) balance the second vibration mode after 2)9506 s and update the imbalance
estimation.

The movement of the balancer is simpli"ed as a linear function. The duration of the
movement is 0)2 s. Comparing the controlled output of the single mode balancing strategy
as shown in Figures 4(d) and (f ), the optimal control method can reduce the
imbalance-induced vibration e$ciently.



Figure 4. The results of di!erent control strategies: (a), (c), (e), (g) di!erent balancing strategies; (a) no balancing;
(c) only balance the "rst vibration mode; (e) only balance the second vibration mode; (g) balance both vibration
modes with the optimal switching function; (b), (d), (f ), (h) the corresponding vibration output.
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4. CONCLUSIONS

An adaptive active balancing strategy for a rotor system is proposed. By using this
strategy, the imbalance-induced vibration during the acceleration period can be e$ciently
suppressed.

There are two basic challenges in this scheme. The "rst one is the estimation of the system
imbalance during the acceleration period. This problem is solved by using an ordinary
recursive least-squares estimation method based on a time domain model of the rotor system.

The second problem is also related to the acceleration. Since there are two or more
vibration modes during acceleration in general, an optimal balancing strategy is required to
suppress all the modes. This problem is solved based on an analytical expression of
the imbalance response of a Je!cott rotor during acceleration. Based on that expression, the
optimal balancing strategy is found to be a simple step function. Con"rmed by the
simulation study, this strategy can reduce the imbalance-induced vibration e$ciently.
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APPENDIX A: OUTLINE OF THE ANALYTICAL SOLUTION

The equation of motion of Je!cott rotor is

rK#21u
n
r5#u2

n
r"w (u2!ia)e*u, (A1)

where r is the position vector of the geometric center of the Je!cott rotor, f and u
n
are the

damping ratio and natural frequency of the rotor, w represents the system imbalance, u is
the rotating speed of the rotor, a is angular acceleration and u is the rotating angle. If only
the real part is considered,
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where C
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carry the magnitude information and p and p@ carry the phase information

of the imbalance. For a second order system, the response to an arbitrary forcing function is
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integration expression, a variable substitution is applied.
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Based on the Cauchy residue theorem, the whole vibration can be written in three
parts.

A. 1. TRANSIENT RESPONSE DUE TO THE INITIAL CONDITION OF THE ROTOR
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A.2. SYNCHRONOUS VIBRATION
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A.3. SUDDENLY OCCURRING TRANSIENT VIBRATION
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Among the above equations, t(z)":=
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e~vJz#vdv, /(z)":=
0

(e~v/Jz#v) dv,
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and C
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are complex constants.

APPENDIX B: NOMENCLATURE

m mass of the shaft
k, c sti!ness and damping coe$cient of bearings
m

u
, m

b
imbalance mass of the rotor and imbalance mass provided by the balancer

u
x
, u

y
, u

z
co-ordinates (in body-"xed co-ordinate) of the imbalance

w
x
, w

y
, w

z
co-ordinates (in body-"xed co-ordinate) of the imbalance provided by the balancer

¸, I
p
, I

t
length, polar moment of inertia of mass and diametric moment of inertia of mass of the
shaft

R
X
, R

Z
displacements (in inertial co-ordinate) of the mass center of the shaft in X and
Z directions

RQ
X
, RQ

Z
velocities of the mass center of the shaft

RG
X
, RG

Z
accelerations of the mass center

/, /0 , /G rotating angle, rotating speed, and rotating angular acceleration of the shaft
t, h Euler angles to describe the orientation of the body-"xed co-ordinate frame in the inertial

co-ordinate frame. (t, h, /) forms an Euler angle set.
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